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Abstract

The free vibration of cantilevered and completely free isosceles triangular plates based on exact three-dimensional

elasticity theory is investigated. The actual plate domain is first mapped onto a basic cubic domain. Then the Ritz method

is applied to derive the eigenfrequency equation from the strain energy and the kinetic energy of the plate. A set of

Chebyshev polynomial series multiplied by a boundary function chosen to satisfy the essential geometry boundary

conditions of the plate is developed as the admissible functions of each displacement component. The convergence and

comparison studies show that rather accurate results can be obtained by using this approach. The effects of thickness-to-

width ratio and apex angle on eigenfrequencies of the plates are studied in detail. Sets of valuable results are presented,

which may serve as the benchmark values for future numerical techniques in thick plate vibration analysis. Data for the

completely free isosceles triangular plates are presented for the first time.� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Triangular plates can be found as basic structural elements in civil, mechanical, aircraft and marine
engineering. In some cases the plates have to bear the dynamic loads, and therefore, to understand their
dynamic characteristics is very important for designers. By making a careful search of the literature, the
authors found that much of the triangular plate vibration analyses are based on the two-dimensional
classical thin plate theory. Since no exact solution has been presented for this problem, numerical ap-
proximation approaches such as the finite element method (Batoz et al., 1980), finite difference method
(Cox and Klein, 1995), superposition method (Gorman, 1989a,b), and Rayleigh–Ritz method (Kim and
Dickinson, 1990; Lam et al., 1990) have to be used.

It is well known that the classical thin plate theory (Timoshenko and Woinowsky-Krieger, 1959) has not
taken into account the effect of transverse shear deformation and rotary inertia. However, the shear de-
formation becomes increasingly important as the thickness–span ratio increases. Also, even for thinner
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plates this effect of rotary inertia should be considered when higher vibration modes are required. Mindlin
(1951) proposed the so-called first-order shear deformation theory by assuming a constant shear strain
distribution through the plate thickness. A shear correction factor is then introduced to compensate the
errors resulting from the approximation made on the non-uniform shear strain distribution. More accurate
results than those from the classical plate theory can be obtained, especially for moderately thick plates.
Recently, Kitipornchai et al. (1993) and Karunasena et al. (1996) studied the free vibration of isosceles
triangular Mindlin plates and cantilevered arbitrary triangular Mindlin plates by using the Rayleigh–Ritz
method. Moreover, McGee and Butalia (1992) used the finite element method to compute the eigenfre-
quencies of cantilevered skewed triangular thick plates, based on a higher order shear deformation theory.
It is obvious that Mindlin plate theory cannot show the symmetric modes (in-plane modes) in the thickness
direction. However, for many of moderately thick triangular plates (in general, the thickness–span ratio
more than 0.1), the first one or two eigenfrequencies of the symmetric modes in the thickness direction are
still in the scope of the low-order eigenfrequencies (first several eigenfrequencies) of the plates. Therefore, to
obtain a complete understanding on the dynamic characteristic of thick triangular plates, three-dimensional
elasticity theory must be employed, even for moderately thick triangular plates.

Up to date, the research on three-dimensional vibration analysis of triangular plates has been very
limited and only two references concerned with this problem have been found. McGee and Giaimo (1992)
studied the three-dimensional vibration of cantilevered right triangular plates using general algebraic
polynomials as admissible functions in the Ritz method. Liew et al. (1994) studied the three-dimensional
vibration of cantilevered skewed trapezoids by using one- and two-dimensional orthogonal polynomial
functions as admissible functions. Some numerical results about cantilevered triangular plates are given.
Both these investigations are focused on the cantilevered triangular plates. The available data are far from
enough to satisfy the need of engineering application and research work. No result about triangular plates
with other boundary conditions can be obtained from the literature. Considering the wide applications of
isosceles triangular plates in various engineering, it is important to present the accurate three-dimensional
vibration analysis in detail. In this paper, the three-dimensional elasticity solutions to vibration of canti-
levered and completely free isosceles triangular plates are studied by the Ritz method. By mapping the
actual plate domain onto a basic cubic domain, a set of Chebyshev polynomials multiplied by a boundary
function is developed as the admissible functions of each displacement component. The boundary function
is chosen such that the admissible functions can satisfy the essential geometric boundary conditions of the
plate. It should be mentioned that the present method is suitable for the vibration analysis of arbitrary
triangular plates. However only the isosceles triangular plates are discussed as the typical example in this
paper. It is convenient for our analysis that isosceles triangular plates have two symmetric planes: the mid-
plane of the plate and the plane orthogonal to the mid-plane and bisecting the apex angle of the plate.
Therefore, the vibration modes of isosceles triangular plates can be divided into four distinct symmetry
classes. They are, respectively, symmetric–symmetric modes (SS); symmetric (about the mid-plane)–anti-
symmetric (about the bisecting-plane) modes (SA); antisymmetric–symmetric modes (AS) and antisym-
metric–antisymmetric modes (AA). This classification has two apparent advantages. One is the size of the
determinant from the resulting eigenfrequency equation is greatly reduced. The other is the effect of
thickness–span ratio on the symmetric modes about the mid-plane can be clearly shown, which can be
neither obtained by the classical plate theory nor the Mindlin plate theory.

2. Theoretical formulation

Consider an isosceles triangular plate with width a, thickness t and apex angle a as shown in Fig. 1(a).
The strain energy V and the kinetic energy T of a three-dimensional elastic body undergoing free vibration
are given by the volume integrals
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V ¼ ð1=2Þ
Z Z Z

½kðex þ ey þ ezÞ2 þ 2Gðe2x þ e2y þ e2z Þ þ Gðc2xy þ c2yz þ c2zxÞ�dxdy dz;

T ¼ ðq=2Þ
Z Z Z

ð _uuþ _vvþ _wwÞdxdy dz;
ð1Þ

where q is a constant mass per unit volume; u ¼ uðx; y; zÞ, v ¼ vðx; y; zÞ and w ¼ wðx; y; zÞ are displacement
components in the x, y and z directions, respectively; _uu, _vv and _ww are the corresponding velocity components.
k and G are the Lame constants for a homogeneous and isotropic material, which are expressed in terms of
Young’s modulus E and the Poisson’s ratio m by

k ¼ mE=½ð1þ mÞð1� 2mÞ�; G ¼ E=½2ð1þ mÞ�: ð2Þ
In Eq. (1), the linear strain–displacement relations are given by

ex ¼ ou=ox; ey ¼ ov=oy; ez ¼ ow=oz;
cxy ¼ ov=oxþ ou=oy; cyz ¼ ow=oy þ om=oz; czx ¼ ou=ozþ ow=ox: ð3Þ

For free vibrations, the displacement components of the three-dimensional elastic body may be expressed as

u ¼ Uðx; y; zÞeixt; v ¼ V ðx; y; zÞeixt; w ¼ W ðx; y; zÞeixt; ð4Þ

where x is the circular eigenfrequency of vibration.
Substituting Eqs. (3) and (4) into Eq. (1), the maximum strain energy V max and the maximum kinetic

energy Tmax of the plate are, respectively, expressed as

V max ¼ ð1=2Þ
Z Z Z

½kV 1 þ GðV 2 þ V 3Þ�dxdy dz;

Tmax ¼ ð1=2Þqx2

Z Z Z
ðU 2 þ V 2 þ W 2Þdxdy dz;

ð5Þ

in which,

V 1 ¼ oU=oxþ oV =oy þ oW =oz;

V 2 ¼ 2ðoU=oxÞ2 þ 2ðoV =oyÞ2 þ 2ðoW =ozÞ2;
V 3 ¼ ðoU=oy þ oV =oxÞ2 þ ðoV =ozþ oW =oyÞ2 þ ðoW =oxþ oU=ozÞ2:

ð6Þ

The Lagrangian energy functional L is given as

L ¼ Tmax � V max: ð7Þ

Fig. 1. Domain transformation: (a) isosceles triangular plate; (b) basic cubic domain.
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For simplicity, the actual isosceles triangular prism domain is mapped onto a basic cubic domain, as
shown in Fig. 1(b), using the following co-ordinate transformation

x ¼ anð1� gÞ=4; y ¼ að1þ cos aÞð1þ gÞ=ð4 sin aÞ; z ¼ tf=2: ð8Þ

Applying the chain rule of differentiation, the relation of the first derivative in the two co-ordinate
systems can be expressed as

oðÞ
ox
oðÞ
oy

( )
¼ J�1

oðÞ
on
oðÞ
og

( )
;

oðÞ
oz

¼ t
2

oðÞ
of

; ð9Þ

where

J ¼
ox
on

oy
on

ox
og

oy
og

" #
¼ a

4

1� g 0
�n ð1þ cos aÞ= sin a

� �
; ð10Þ

in which, J denotes the Jacobian matrix of the geometrical mapping. Eqs. (9) and (10) will be used later to
transform the x–y–z domain integrals in Eqs. (1) and (2) into n–g–f domain integrals.

The displacement functions Uðx; y; zÞ ¼ Uðn; g; fÞ, V ðx; y; zÞ ¼ V ðn; g; fÞ and W ðx; y; zÞ ¼ W ðn; g; fÞ are
approximately expressed in terms of a finite series as

Uðn; g; fÞ ¼ fuðn; g; fÞ
XI

i¼1

XJ

j¼1

XK
k¼1

AijkFiðnÞFjðgÞFkðfÞ;

V ðn; g; fÞ ¼ fvðn; g; fÞ
XL

l¼1

XM
m¼1

XN
n¼1

BlmnFlðnÞFmðgÞFnðfÞ;

W ðn; g; fÞ ¼ fwðn; g; fÞ
XP

p¼1

XQ
q¼1

XR

r¼1

CpqrFpðnÞFqðgÞFrðfÞ;

ð11Þ

where Aijk, Blmn and Cpqr are undetermined coefficients, fuðn; g; fÞ, fvðn; g; fÞ and fwðn; g; fÞ are the boundary
functions while all the series functions have an identical form of formulation: FsðvÞ ðs ¼ i; j; k; l;m; n; p; q; r
and v ¼ n; g; fÞ which are a set of Chebyshev polynomials defined in interval ½�1; 1�, expressed by

FsðvÞ ¼ cos½ðs� 1Þ arccosðvÞ�; s ¼ 1; 2; 3; . . . ð12Þ

It should be noted that selecting Chebyshev polynomial series as the admissible functions of each dis-
placement component has two distinct advantages (Fox and Parker, 1968). One is that FsðvÞ ðs ¼ 1; 2; 3; . . .Þ
is a set of complete and orthogonal series in interval ½�1; 1�, which has more rapid convergence and better
numerical stability in computation than other polynomial series such as the Taylor series. The other is that
FsðvÞ ðs ¼ 1; 2; 3; . . .Þ can be expressed in a simple and unified form of cosine function, which reduces the
coding effort. The first five Chebyshev polynomials are given in Fig. 2.

In using the Ritz method, the stress boundary conditions of the plates need not be satisfied in advance,
however, the geometric boundary conditions should be satisfied exactly. Therefore, the boundary functions
for cantilevered plates are given by

fuðn; g; fÞ ¼ fvðn; g; fÞ ¼ fwðn; g; fÞ ¼ 1þ n; ð13Þ

and the boundary functions for completely free plates are given by
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fuðn; g; fÞ ¼ fvðn; g; fÞ ¼ fwðn; g; fÞ ¼ 1: ð14Þ
Substituting Eqs. (7)–(9) into Eqs. (5)–(7), the Lagrangian functional L can be expressed in terms of the

co-ordinate system n–g–f as follows

L ¼ ðt=4Þqx2

Z 1

�1

Z 1

�1

Z 1

�1

ðU 2 þ V 2 þ W 2ÞjJjdndgdf

� ðt=4Þ
Z 1

�1

Z 1

�1

Z 1

�1

½kV 1 þ GðV 2 þ V 3Þ�jJ jdndgdf; ð15Þ

where jJj ¼ a2ð1� gÞð1þ cos aÞ=ð16 sin aÞ is the determinant of the Jacobian matrix J .
Substituting Eq. (11) into the L expression, and minimizing L with respect to the undetermined coeffi-

cients Aijk, Blmn and Cpqr, a set of eigenfrequency equations is derived, which can be written in matrix form
as

½Kuu� ½Kuv� ½Kuw�
½Kuv�T ½Kvv� ½Kvw�
½Kuw�T ½Kvw�T ½Kww�

2
4

3
5

0
@ � X2

Muu 0 0

0 Mvv 0

0 0 Mww

2
4

3
5
1
A fAg

fBg
fCg

8<
:

9=
; ¼

f0g
f0g
f0g

8<
:

9=
;; ð16Þ

in which X ¼ xaðq=EÞ1=2, ½Kij� and ½Mii� ði; j ¼ u; v;wÞ are the sub-stiffness matrices and the diagonal sub-
mass matrices. fAg, fBg and fCg are the column vectors of the unknown coefficients which are expressed in
the following forms

fAg ¼

A1 1 1

A1 1 2

..

.

A11K

A1 2 1

..

.

A12K

..

.

A1JK

..

.

AIJK

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

; fBg ¼

B1 1 1

B1 1 2

..

.

B11N

B1 2 1

..

.

B12N

..

.

B1MN

..

.

ALMN

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

; fCg ¼

C1 1 1

C1 1 2

..

.

C11R

C1 2 1

..

.

C12R

..

.

C1QR

..

.

CPQR

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

: ð17Þ

Fig. 2. The first five terms of Chebyshev polynomial series FsðvÞ ðs ¼ 1; 2; 3; 4; 5Þ.
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The expressions of the various elements in every sub-matrices ½Kij� and ½Mii� ði; j ¼ u; v;wÞ are given by

½Kuu� ¼
ð1� mÞð1þ cos aÞ
ð1� 2mÞ sin a

E1 1 0
uiu�ii G

0 0�1
uju�jj H 00

uku�kk þ
sin a

2ð1þ cos aÞ ðE
1 1 2
uiu�ii G

0 0�1
uju�jj þ E0 0

uiu�iiG
1 1 1
uju�jj þ E1 0 1

uiu�ii G
0 1 0
uju�jj

þ E0 1 1
uiu�ii G

1 0 0
uju�jj ÞH 0 0

uku�kk þ
1þ cos a
8c2 sin a

E0 0 0
uiu�ii G

0 0 1
uju�jjH

0 0
uku�kk;

½Kvv� ¼
ð1� mÞ sin a

ð1� 2mÞð1þ cos aÞ ðE
1 1 2
vlv�ll G

0 0�1
vmv�mm þ E0 0 0

vlv�ll G
1 1 1
vmv�mm þ E1 0 1

vlv�ll G
0 1 0
vmv�mm þ E0 1 1

vlv�ll G
1 0 0
vmv�mmÞH 0 0

vnv�nn

þ 1þ cos a
8c2 sin a

E0 0 0
vlv�ll G

0 0 1
vmv�mmH

1 1
vnv�nn þ

1þ cos a
2 sin a

E1 1 0
vlv�ll G

0 0�1
vmv�mmH

0 0
vnv�nn;

½Kww� ¼
ð1� mÞð1þ cos aÞ
4ð1� 2mÞ sin a

E0 0 0
wpw�ppG

0 0 1
wqw�qqH

1 1
wrw�rr þ

sin a
2ð1þ cos aÞ ðE

1 1 2
wpw�ppG

0 0�1
wqw�qq þ E0 0 0

wpw�ppG
1 1 1
wqw�qq

þ E1 0 1
wpw�ppG

0 1 0
wqw�qq þ E0 1 1

wpw�ppG
1 0 0
wqw�qqÞH 0 0

wrw�rr þ
1þ cos a
2 sin a

E1 1 0
wpw�ppG

0 0�1
wqw�qqH

0 0
wrw�rr;

½Kuv� ¼
m

1� 2m
ðE1 1 1

uiv�ll G
0 0�1
ujv�mm þ E1 0 0

uiv�ll G
0 1 0
ujv�mmÞH 0 0

ukv�nn þ
1

2
ðE1 1 1

uiv�ll G
0 0�1
ujv�mm þ E0 1 0

uiv�ll G
1 0 0
ujv�mmÞH 0 0

ukv�nn;

½Kuw� ¼
ð1þ cos aÞ
4c sin a

2m
1� 2m

E1 0 0
uiw�ppG

0 0 0
ujw�qqH

0 1
ukw�rr

�
þ E0 1 0

uiw�ppG
0 0 0
ujw�qqH

1 0
ukw�rr

�
;

½Kvw� ¼
1

2c2
2m

1� 2m
ðE1 0 1

vlw�ppG
0 0 0
vmw�qq

�
þ E0 0 0

vlw�ppG
1 0 1
vmw�qqÞH 0 1

vnw�rr þ ðE0 1 1
vlw�ppG

0 0 0
vmw�qq þ E0 0 0

vlw�ppG
0 1 1
vmw�qqÞH 1 0

vnw�rr

�
;

½Muu� ¼
ð1þ mÞð1þ cos aÞ

32 sin a
E0 0 0
uiu�ii G

0 0 1
uju�jjH

0 0
uku�kk;

½Mvv� ¼
ð1þ mÞð1þ cos aÞ

32 sin a
E0 0 0
vlv�ll G

0 0 1
vmv�mmH

0 0
vnv�nn;

½Mww� ¼
ð1þ mÞð1þ cos aÞ

32 sin a
E0 0 0
vpv�ppG

0 0 1
vqv�qqH

0 0
wrw�rr

Ehr1
asb�ss ¼

Z 1

�1

½dhFsðnÞ=dnh�½drF�ssðnÞ=dnr�n1 dn;

Ghrs
asb�ss ¼

Z 1

�1

½dhF sðgÞ=dgh�½drF �ssðgÞ=dgr�ð1� gÞs dg;

H hr
asb�ss ¼

Z 1

�1

½dhFsðfÞ=dfh�½drF�ssðfÞ=dfr�df; ð18Þ

in which,

h;r ¼ 0; 1; 1 ¼ 0; 1; 2; s ¼ �1; 0; 1; a; b ¼ u; v;w; s ¼ i; j; k; l;m; n; p; q; r;

�ss ¼ �ii;�jj; �kk;�ll; �mm; �nn; �pp; �qq;�rr; c ¼ t=a; F sðgÞ ¼ ð1þ gÞdFsðgÞ; ð19Þ
for the cantilevered plates d ¼ 1, and for the completely free plates d ¼ 0.

It is obvious that for both cantilevered isosceles triangular plates and completely free isosceles triangular
plates, two symmetric planes exist. One is the x–y plane (z ¼ 0: the mid-plane of the plate) and the other is
the y–z plane (x ¼ 0: the bisecting plane). In such a case, one should take advantage of the symmetry to
reduce the size of the eigenfrequency equation. For the symmetric modes about x–y plane, one should take
k,n ¼ 1; 3; 5; . . ., r ¼ 2; 4; 6; . . . For the antisymmetric modes about x–y plane, one should take k,
n ¼ 2; 4; 6; . . ., r ¼ 1; 3; 5; . . . For the symmetric modes about y–z plane, one should take i ¼ 2; 4; 6; . . ., l,
p ¼ 1; 3; 5; . . . While for the antisymmetric modes about y–z plane, one should take i ¼ 1; 3; 5; . . ., l,
p ¼ 2; 4; 6; . . . Correspondingly, the vibration modes of the plates can also be divided into four distinct
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categories. They are, respectively, SS modes; SA (about the mid-plane x–y)–(about the bisecting-plane y–z)
modes; AS modes and AA modes. Each of these categories can be separately investigated. A non-trivial
solution is obtained by setting the determinant of the coefficient matrix of equation (16) equal to zero.
Roots of the determinant are the square of the non-dimensional eigenfrequencies (eigenvalues). Mode
shapes (eigenfunctions) are determined by back-substitution of the eigenvalues, one-by-one, in the usual
manner. All computations are performed in double precision (16 significant figures) on a microcomputer.
The integrals in Eq. (18) are numerically evaluated by the piecewise Gauss quadrature with 24 points.

3. Convergence and comparison studies

As it is well known, eigenfrequencies by the Ritz method converge in the manner of upper bounds to the
exact values. These upper bounds could be improved by increasing the numbers of terms of the admissible
functions in the computation. To demonstrate the accuracy and convergence of the method, the numerical
results of AS modes for completely free equilateral triangular plates are presented in Table 1 with respect to
the numbers of terms of the Chebyshev polynomials. Three different thickness-to-width ratios c ¼ 0:05,
c ¼ 0:15 and c ¼ 0:45 are considered. For convenience in comparing with available results, an eigenfre-
quency parameter k is defined as

Table 1

The convergence study of eigenfrequencies of AS modes for completely free equilateral triangular plates

Terms k1 k2 k3 k4 k5 k6

c¼ 0.05

3� 6� 3 5.4031 5.5848 13.368 18.055 32.974 34.706

4� 8� 2 5.3500 5.5439 12.891 17.453 24.614 24.769

4� 8� 4 5.3500 5.5439 12.891 17.453 24.613 24.765

5� 10� 2 5.3467 5.5400 12.871 17.334 23.734 23.815

5� 10� 4 5.3467 5.5400 12.871 17.334 23.733 23.814

6� 12� 2 5.3458 5.5392 12.868 17.324 23.690 23.784

6� 12� 4 5.3458 5.5392 12.868 17.323 23.689 23.783

8� 16� 2 5.3456 5.5391 12.868 17.321 23.686 23.781

9� 18� 2 5.3456 5.5391 12.868 17.321 23.686 23.781

c¼ 0.15

3� 6� 3 4.8427 4.8532 10.513 13.704 19.823 21.848

4� 8� 2 4.8335 4.8355 10.354 13.414 16.767 17.673

4� 8� 3 4.8330 4.8350 10.350 13.405 16.750 17.649

4� 8� 6 4.8330 4.8350 10.350 13.405 16.749 17.649

5� 10� 2 4.8331 4.8352 10.347 13.389 16.534 17.384

5� 10� 3 4.8326 4.8347 10.343 13.382 16.521 17.367

5� 10� 6 4.8326 4.8347 10.343 13.382 16.521 17.367

6� 12� 3 4.8325 4.8347 10.343 13.381 16.515 17.360

7� 14� 3 4.8325 4.8347 10.343 13.381 16.515 17.360

c¼ 0.45

3� 6� 4 2.8866 3.2029 4.6498 5.2150 6.6944 6.9614

4� 8� 3 2.8852 3.1971 4.6390 5.1955 6.6039 6.8034

4� 8� 4 2.8851 3.1970 4.6387 5.1952 6.6032 6.8029

4� 8� 6 2.8851 3.1970 4.6387 5.1952 6.6032 6.8028

5� 10� 3 2.8852 3.1970 4.6384 5.1945 6.5999 6.7954

5� 10� 4 2.8851 3.1970 4.6381 5.1943 6.5993 6.7950

5� 10� 6 2.8851 3.1970 4.6381 5.1943 6.5993 6.7950

6� 12� 4 2.8851 3.1970 4.6381 5.1943 6.5993 6.7950
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k ¼ ðxa2=2pÞ
ffiffiffiffiffiffiffiffiffiffi
qt=D

p
¼ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� m2Þ

p
=ð2pcÞ: ð20Þ

In all the computation, the Poisson’s ratio m is assumed to be 0.3. Equal numbers of Chebyshev polynomial
series are taken for U, V and W in Eq. (11) in each direction, i.e. I ¼ L ¼ P , J ¼ M ¼ Q and K ¼ N ¼ R,

Table 2

The comparison study of eigenfrequencies for the cantilevered isosceles triangular plate with c ¼ 0:1, a ¼ 53:13� using three-dimen-

sional elasticity theory in the Ritz method

Terms Determinent size kAS
1 kAA

2 kAS
3 kSA

4 kAS
5 kAA

6

3� 6� 2 108 1.0562 4.2419 4.3304 5.7395 9.8630 10.446

4� 8� 2 192 1.0530 4.2228 4.3174 5.7361 9.7123 10.270

5� 10� 2 300 1.0518 4.2175 4.3128 5.7349 9.7009 10.258

6� 12� 2 432 1.0512 4.2155 4.3109 5.7345 9.6970 10.254

7� 14� 3 882 1.0508 4.2135 4.3088 5.7340 9.6913 10.248

Liew et al. (1994) 1365a 1.0594 4.2856 4.3685 5.7399 10.067 10.700

aA half of the size (2730) of the actual determinant in Liew’s paper because that the symmetry of the plate in the n direction is not

considered in their paper.

Table 3

The comparison study of eigenfrequencies for cantilevered isosceles triangular plates with different thickness-to-width ratio and apex

angles using three-dimensional elasticity theory and Mindlin plate theory, respectively

Reference c kAS
1 kAS

2 kAA
3 kAS

4 kAA
5 kAS

6

a¼ 30�
Kitipornchai et al. (1993) 0.05 0.3133 1.350 2.081 3.260 5.102 5.979

Presenta 0.3137 1.351 2.084 3.265 5.109 5.989

Kitipornchai et al. (1993) 0.1 0.3115 1.326 1.980 3.148 4.725 5.647

Presentb 0.3121 1.329 1.985 3.158 4.742 5.670

Kitipornchai et al. (1993) 0.2 0.3062 1.251 1.709 2.820 3.801 4.780

Presentc 0.3072 1.257 1.717 2.840 3.826 4.825

a¼ 60�
Kitipornchai et al. (1993) 0.05 1.404 5.387 5.929 13.50 13.86 15.99

Presentd 1.407 5.399 5.944 13.54 13.90 16.04

Kitipornchai et al. (1993) 0.1 1.376 4.999 5.540 12.00 12.12 13.85

Presente 1.380 5.023 5.569 12.20 12.09 13.96

Kitipornchai et al. (1993) 0.2 1.295 4.051 4.586 8.802 9.060 10.06

Presentf 1.303 4.087 4.636 8.908 9.182 10.21

a¼ 90�
Kitipornchai et al. (1993) 0.05 3.926 10.84 15.58 24.36 27.26 36.03

Presentg 3.938 10.88 15.65 24.49 27.41 36.26

Kitipornchai et al. (1993) 0.1 3.741 9.661 13.41 20.11 22.19 27.96

Presenth 3.762 9.734 13.53 20.33 22.42 28.31

Kitipornchai et al. (1993) 0.2 3.267 7.250 9.583 13.65 14.81 17.85

Presenti 3.300 7.347 9.743 13.90 15.06 18.19

aAdditional SA mode presented by the three-dimensional Ritz solution is 4.111.
bAdditional SA modes presented by the three-dimensional Ritz solution are 2.057 and 4.999.
cAdditional SA modes presented by the three-dimensional Ritz solution are 1.029; 2.501 and 4.294 and SS mode is 3.346.
dAdditional SA mode presented by the three-dimensional Ritz solution is 14.099.
eAdditional SA mode presented by the three-dimensional Ritz solution is 7.054 and SS mode is 13.77.
f Additional SA modes presented by the three-dimensional Ritz solution are 3.531 and 7.056 and SS mode is 6.895.
gAdditional SA mode presented by the three-dimensional Ritz solution is 2.798.
hAdditional SA modes presented by the three-dimensional Ritz solution are 14.00 and 25.42 and SS mode is 22.40.
i Additional SA modes presented by the three-dimensional Ritz solution are 7.006 and 12.70 and SS modes are 11.22 and 18.05.
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although in most cases, computational optimization could be obtained by using unequal numbers of series
terms. Taking into account the asymmetry of the plates in the g direction, the numbers of the Chebyshev
polynomials used in the g direction are double of those used in the n direction. From Table 1, it is observed
that the present three-dimensional Ritz solutions converge monotonically from the above to the eigen-
frequency values with the increase of the number of terms of the Chebyshev polynomial series. Moreover, it
is shown that the rate of convergence for the first six eigenfrequencies is more sensitive to the orders I and J
of the Chebyshev series employed in the surface function (n–g plane) than the order K of the series em-
ployed in the thickness direction (f direction). However, with the increase of the thickness-to-width ratio,
more terms of Chebyshev polynomials in the f direction accompanying less terms used in the n–g plane are
needed. It is further seen that for the plate with thickness-to-width ratio c ¼ 0:05, the first six eigenfre-
quencies converge to five-digit accuracy using 8� 16� 2 terms of the Chebyshev polynomials. For c ¼ 0:15
the first six eigenfrequencies converge to five-digit accuracy using 6� 12� 3 terms of the Chebyshev
polynomials. And for c ¼ 0:45 the first six eigenfrequencies converge to five-digit accuracy using 5� 10� 4
terms of the Chebyshev polynomials. In Table 2, the convergence and accuracy of the first six eigenfre-
quencies for the cantilevered isosceles triangular plate with thickness-to-width ratio c ¼ 0:1 and apex angle
a ¼ 53:13� are validated through comparison with the results presented by Liew et al. (1994). Up to now,
Liew’s results are the only available data for isosceles triangular plates using three-dimensional elasticity
theory in literature. In Liew’s paper, one- and two-dimensional orthogonal polynomial functions are de-
veloped as the admissible functions of each displacement component in the Ritz method. It is shown that
using Chebyshev polynomials as the admissible functions can give higher accuracy and more rapid con-
vergence than using orthogonal polynomials. The eigenfrequencies for cantilevered isosceles triangular
plates with moderate thickness are presented in Table 3 together with the Mindlin plate solutions presented
by Kitipornchai et al. (1993). Three different thickness-to-width ratios c ¼ 0:05, c ¼ 0:1 and c ¼ 0:2 as well

Table 4

The comparison study of eigenfrequencies for isosceles triangular plates with small apex angles a ¼ 2 tan�1ðt=2lÞ, respectively, using
three-dimensional elasticity theory and Timoshenko beam theory

t=l Theories ~kkSA
1

~kkSA
2

~kkSA
3

~kkAS
1

~kkAS
2

~kkAS
3

0.04 3-D 5.3167 15.194 29.955 7.1447 30.780 73.910

T-Beama 5.3099 15.172 29.897 7.1404 30.713 73.730

0.1 3-D 5.3003 15.059 29.483 7.0841 29.289 66.725

T-Beam 5.2830 14.992 29.279 7.0579 29.161 66.362

0.15 3-D 5.2781 14.852 28.739 6.9723 27.418 59.307

T-Beam 5.2438 14.735 28.430 6.9412 27.261 58.870

0.2 3-D 5.2410 14.563 27.766 6.8199 25.327 52.339

T-Beam 5.1902 14.398 27.364 6.7887 25.163 51.889

0.25 3-D 5.1932 14.208 26.627 6.6370 23.246 46.341

T-Beam 5.1235 13.996 26.166 6.6088 23.086 45.908

0.3 3-D 5.1356 13.799 25.388 6.4336 21.297 41.330

T-Beam 5.0453 13.548 24.914 6.4098 21.145 40.929

0.35 3-D 5.0673 13.350 24.115 6.2156 19.523 37.162

T-Beam 4.9573 13.072 23.666 6.1992 19.387 36.806

0.4 3-D 4.9920 12.875 22.850 5.9909 17.938 33.679

T-Beam 4.8610 12.582 22.463 5.9830 17.819 33.373

a The results using Timoshenko beam theory come from Zhou and Cheung (2001).
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as three different apex angles a ¼ 30�, a ¼ 60� and a ¼ 90� are considered. It is shownthat Mindlin plate
theory presents lower eigenfrequencies when a shear correction factor j ¼ 5=6 is used and the differences
between the three-dimensional elasticity solutions and the Mindlin plate solutions increase with the increase
of thickness-to-width of the plates. Moreover, it should be noticed that the three-dimensional elasticity
theory is able to represent more vibration modes than the Mindlin plate theory because the Mindlin plate
theory ignores the effect of symmetric deformation in the thickness direction of the plates. Therefore, the
SA and SS modes cannot be presented by the Mindlin plate theory, as seen from Table 3. It is obvious that
for a small apex angle, the plate can be approximately considered as a beam. In such a case, the results from
the exact three-dimensional elasticity theory should tend to approach the solutions of the one-dimensional
beam theory. A comparison of eigenfrequency parameters for cantilevered isosceles triangular plates with
small apex angles, resulted from the exact three-dimensional elasticity theory (3-D) and the Timoshenko
beam theory (T-Beam) (Zhou and Cheung, 2001) is given in Table 4 for a plate with a square larger end
(c ¼ 1:0). A new eigenfrequencies parameter ~kk is defined as ~kk ¼ xl2ðqA0=EI0Þ1=2 ¼ Xð12Þ1=2=ðt=lÞ2 where A0

and I0 are, respectively, the cross-sectional area and the area moment of inertia of the plate at the larger end

Table 5

The eigenfrequencies of AS modes for cantilevered isosceles triangular plates with respect to different thickness-to-width ratios c and

apex angles a

c k1 k2 k3 k4 k5 k6

a¼ 30�
0.1 0.31208 1.3290 3.1578 5.6701 8.4482 8.8130

0.2 0.30716 1.2572 2.8394 4.8242 6.8130 7.0857

0.3 0.30065 1.1652 2.4918 4.0363 5.5084 5.7025

0.4 0.29274 1.0674 2.1797 3.4103 4.5622 4.7017

0.5 0.28387 0.97324 1.9187 2.9357 3.8671 3.9656

a¼ 60�
0.1 1.3804 5.5686 12.088 13.965 20.466 24.298

0.2 1.3030 4.6361 9.1827 10.207 14.221 16.452

0.3 1.2087 3.8016 7.1440 7.7788 10.399 11.971

0.4 1.1112 3.1552 5.7801 6.2136 7.4208 8.8431

0.5 1.0193 2.6682 4.8082 5.1032 5.4213 7.1192

a¼ 90�
0.1 3.7621 13.531 20.326 28.311 34.951 44.830

0.2 3.3011 9.7465 13.902 18.199 21.947 26.158

0.3 2.8442 7.2894 10.203 13.101 14.210 16.597

0.4 2.4598 5.7209 7.9228 9.6688 10.154 11.841

0.5 2.1431 4.6566 6.3490 7.3325 8.1635 9.0187

a¼ 120�
0.1 9.4729 26.079 35.378 45.454 57.624 66.163

0.2 7.3914 16.948 20.965 27.171 31.719 35.002

0.3 5.8426 12.118 14.343 18.638 19.360 21.281

0.4 4.7629 9.2836 10.776 13.230 14.068 15.081

0.5 3.9935 7.4590 8.5962 10.029 10.591 11.786

a¼ 150�
0.1 29.538 52.443 73.125 81.662 96.136 110.97

0.2 18.946 31.021 39.388 42.087 45.547 51.587

0.3 13.600 21.709 25.555 27.062 29.323 31.860

0.4 10.535 16.626 18.605 19.141 21.393 22.239

0.5 8.5811 13.387 14.047 14.960 16.358 17.192
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and l is the length of the plate. It is shown that with the decrease of the thickness-to-length ratio t=l
½a ¼ 2 tan�1ðt=2lÞ�, the SA modes of the three-dimensional plates are close to the modes of the one-
dimensional beams with linearly varying thickness. While the AS modes of the three-dimensional plates
are close to the modes of the one-dimensional beams with linearly varying width.

4. Numerical results

Having confirmed its rapid convergence and high accuracy, the present formulation is applied to the
computation of the non-dimensional eigenfrequency parameters k for cantilevered and completely free
isosceles triangular plates. The effect of thickness-to-width ratios c and apex angles a is investigated in
detail. Five thickness-to-width ratios from 0.1 to 0.5 with an increment of 0.1 and five apex angles from 30�
to 150� with an increment of 30� are considered. The first six eigenfrequency parameters of AS and SA
modes and the first three eigenfrequency parameters of SA and SS modes are given in Tables 5–10,

Table 6

The eigenfrequencies of AA modes for cantilevered isosceles triangular plates with respect to different thickness-to-width ratios c and

apex angles a

c k1 k2 k3 k4 k5 k6

a¼ 30�
0.1 1.9848 4.7414 7.9106 11.459 15.284 16.336

0.2 1.7170 3.8249 5.9403 7.9957 9.9428 11.800

0.3 1.4292 2.9414 4.2167 5.4087 6.7063 8.0894

0.4 1.1681 2.2044 3.0514 3.9858 4.9902 6.0294

0.5 0.94935 1.6670 2.3466 3.1190 3.9284 4.5771

a¼ 60�
0.1 5.0226 12.201 20.242 23.411 29.482 35.194

0.2 4.0872 8.9082 13.519 15.599 18.051 21.279

0.3 3.2383 6.5316 9.0877 10.719 11.649 13.172

0.4 2.5690 4.8211 6.4878 7.4204 8.1521 9.1323

0.5 2.0597 3.6459 4.9906 5.5058 6.1309 7.0885

a¼ 90�
0.1 9.7339 22.421 31.697 38.082 46.650 55.443

0.2 7.3493 15.061 19.904 22.265 26.704 28.413

0.3 5.5661 10.702 12.771 13.086 16.109 17.093

0.4 4.3191 7.5204 8.8238 9.2127 11.776 12.298

0.5 3.4362 5.5670 6.5609 7.4277 9.1630 9.3755

a¼ 120�
0.1 18.280 35.741 50.273 55.788 69.062 76.864

0.2 12.538 22.535 27.352 29.164 32.573 36.401

0.3 9.0969 14.727 16.247 17.213 22.094 22.662

0.4 6.9354 9.7969 12.061 12.603 15.755 16.388

0.5 5.4920 7.3737 9.2821 10.256 11.366 12.393

a¼ 150�
0.1 41.887 63.559 84.502 99.368 107.59 114.68

0.2 25.173 36.404 36.971 45.281 47.660 51.949

0.3 17.440 20.951 25.689 28.616 31.400 33.221

0.4 13.061 14.907 19.496 20.382 21.729 23.022

0.5 10.321 11.690 14.697 15.722 16.436 17.550
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Table 7

The eigenfrequencies of SA and SS modes for cantilevered isosceles triangular plates with respect to different thickness-to-width ratios

c and apex angles a

c kSA
1 kSA

2 kSA
3 kSS

1 kSS
2 kSS

3

a¼ 30�
0.1 2.0566 4.9994 8.5869 6.6868 15.223 22.349

0.2 1.0291 2.5008 4.2941 3.3461 7.6123 11.167

0.3 0.68668 1.6681 2.8639 2.2323 5.0723 7.4301

0.4 0.51540 1.2518 2.1492 1.6751 3.7991 5.5490

0.5 0.41264 1.0022 1.7206 1.3406 3.0322 4.4041

a¼ 60�
0.1 7.0541 14.114 23.644 13.772 28.325 31.265

0.2 3.5314 7.0560 11.812 6.8955 14.145 15.605

0.3 2.3569 4.7028 7.8626 4.6006 9.3874 10.355

0.4 1.7697 3.5257 5.8799 3.4514 6.9696 7.6613

0.5 1.4173 2.8188 4.6589 2.7601 5.4377 5.8103

a¼ 90�
0.1 13.996 25.423 40.305 22.401 36.213 43.939

0.2 7.0060 12.704 20.147 11.219 18.049 21.864

0.3 4.6752 8.4529 13.419 7.4802 11.915 14.277

0.4 3.5099 6.3140 9.2812 5.6019 8.7183 9.4591

0.5 2.8109 5.0049 6.2189 4.4626 6.3045 6.6247

a¼ 120�
0.1 24.492 42.103 57.382 36.126 47.949 57.822

0.2 12.254 20.996 28.597 18.085 23.890 28.631

0.3 8.1739 13.821 17.821 12.013 15.493 17.271

0.4 6.1352 9.8951 11.457 8.8496 10.434 11.519

0.5 4.9129 7.2394 8.7076 6.6575 7.7102 8.7016

a¼ 150�
0.1 49.180 80.935 90.086 71.542 75.457 94.430

0.2 24.585 38.379 43.522 35.425 36.435 42.899

0.3 16.393 22.035 27.418 20.369 24.087 25.258

0.4 12.304 15.016 18.424 13.570 17.778 18.130

0.5 9.8548 11.382 13.540 10.129 13.891 14.492

Table 8

The eigenfrequencies of AS modes for completely free isosceles triangular plates with respect to different thickness-to-width ratios c
and apex angles a

c k1 k2 k3 k4 k5 k6

a¼ 30�
0.1 1.2263 3.0564 4.5810 5.6261 8.7328 9.6395

0.2 1.1776 2.7964 4.0343 4.8893 7.1892 7.8109

0.3 1.1143 2.4992 3.4879 4.1676 5.8633 6.3541

0.4 1.0447 2.2169 3.0204 3.5650 4.8249 5.2795

0.5 0.97491 1.9651 2.6351 3.0768 3.9295 4.3690

a¼ 60�
0.1 5.1220 5.2164 11.674 15.352 20.024 20.493

0.2 4.4435 4.5198 9.0950 11.691 13.511 14.792

0.3 3.7275 3.9210 6.9974 8.9910 9.1722 11.075

0.4 3.1369 3.4139 5.3153 6.1282 7.4608 7.6839

0.5 2.6582 3.0018 4.0817 4.4547 5.8304 6.1936
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respectively. For c ¼ 0:1 and c ¼ 0:2, 7� 14� 3 terms of Chebyshev polynomials; for c ¼ 0:3 and c ¼ 0:4,
6� 12� 4 terms and for c ¼ 0:5, 6� 12� 5 terms are used in the computation. It is seen that with the
increase of the plate thickness, eigenfrequencies will monotonically decrease for the cantilevered isosceles
triangular plates. While the eigenfrequencies monotonically increase with the increase of the apex angle.
Such a phenomenon cannot be observed for the completely free isosceles triangular plates.

5. Concluding remarks

In this paper, a global three-dimensional Ritz formulation is presented for the free vibration analysis of
cantilevered and completely free isosceles triangular plates. The triangular plate domain is mapped onto a
basic cubic domain and a set of Chebyshev polynomial series multiplying by a boundary function is
developed as the admissible functions of each displacement component. High accuracy and low compu-
tational cost are confirmed by the convergence and comparison studies. In the analysis, an exact three-
dimensional elasticity theory based on isotropic material and small strain is used. Extensive and accurate
eigenfrequencies are reported for the free vibration of completely free isosceles triangular plates for the first
time in literature. Although other numerical methods such as finite element methods and finite difference
methods can also be applied to solve the problem considered here, they typically require many more degrees
of freedom. This necessarily results in the evaluation of much larger sizes of eigenfrequency equation to
achieve satisfactory results, resulting in greater cost in a computation. The data from the present Ritz
solutions can be used as standard to judge the accuracy of other numerical methods and various kinds of
two-dimensional plate theories and one-dimensional beam theories. Moreover, it is seen that higher ac-
curacy, more rapid convergence as well as better numerical stability in the computation can be obtained by
using the Chebyshev polynomial series as the admissible functions than using other polynomial series. In
future research, it would be fruitful to develop further the potential of Chebyshev polynomials in the three-
dimensional vibration analysis of other structural elements with different geometric shapes.

Table 8 (continued)

c k1 k2 k3 k4 k5 k6

a¼ 90�
0.1 5.5685 12.005 18.791 22.848 29.158 33.756

0.2 4.7666 8.9381 13.454 13.984 18.634 20.173

0.3 4.0050 6.4225 8.5548 10.508 11.855 12.930

0.4 3.3608 4.6045 6.3498 7.7538 8.5291 8.9076

0.5 2.8118 3.5268 5.0493 5.7671 6.6541 6.7823

a¼ 120�
0.1 5.8244 17.595 22.754 32.789 38.114 42.855

0.2 4.9086 9.9887 13.405 15.924 21.126 24.091

0.3 4.0689 5.5646 9.1534 10.530 13.641 14.916

0.4 3.2330 3.8764 6.4791 8.0773 8.4760 9.6745

0.5 2.4438 3.2146 4.9337 5.4932 6.3294 7.3394

a¼ 150�
0.1 5.8239 18.727 19.839 28.394 37.099 40.435

0.2 4.8523 6.1210 10.320 14.245 15.888 19.358

0.3 3.0357 4.2381 5.8475 8.2711 9.4814 10.892

0.4 1.9347 3.5770 4.0545 4.6750 6.7064 7.6823

0.5 1.3859 2.8600 3.0445 3.3070 4.8743 5.1312
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Table 9

The eigenfrequencies of AA modes for completely free isosceles triangular plates with respect to different thickness-to-width ratios c
and apex angles a

c k1 k2 k3 k4 k5 k6

a¼ 30�
0.1 2.5164 5.0007 8.0621 10.705 11.625 15.470

0.2 2.2124 4.0949 6.1296 8.1039 8.5184 10.149

0.3 1.8790 3.1928 4.3733 5.5343 6.4822 6.9642

0.4 1.5522 2.4257 3.2078 4.0639 4.8101 5.2807

0.5 1.2531 1.8821 2.5145 3.0945 3.6237 4.0872

a¼ 60�
0.1 5.2164 11.674 12.049 20.024 25.333 29.065

0.2 4.4435 8.7562 9.0950 13.511 17.219 17.243

0.3 3.7275 6.0873 6.9974 8.9010 10.489 11.634

0.4 3.1369 4.1290 5.3153 6.1282 7.2194 7.6839

0.5 2.6582 2.8620 4.0817 4.4547 5.3909 5.8304

a¼ 90�
0.1 8.2027 12.951 20.243 28.751 33.058 40.602

0.2 6.6076 9.2433 13.197 16.888 19.645 22.735

0.3 4.9871 6.5272 8.7245 10.098 12.772 13.277

0.4 3.4757 5.0966 6.1577 6.5197 8.4843 9.1997

0.5 2.4365 4.1577 4.5573 4.7036 6.4373 6.9829

a¼ 120�
0.1 10.612 15.427 25.868 31.243 41.216 46.444

0.2 7.7169 9.0138 13.088 17.794 19.875 24.969

0.3 4.3199 7.0419 7.6288 11.250 12.148 14.226

0.4 2.6733 4.9697 5.9657 7.0382 8.1549 8.7164

0.5 1.8053 3.6723 4.6765 5.2092 5.4069 6.4842

a¼ 150�
0.1 11.590 15.665 24.004 28.011 34.733 46.524

0.2 5.0585 8.3559 9.3877 13.212 18.700 19.771

0.3 2.4682 4.4870 7.4973 7.6311 8.4809 11.516

0.4 1.4686 2.9275 4.6194 5.3085 6.2018 7.3320

0.5 0.97457 2.1370 2.9750 4.0444 4.7539 4.9035

Table 10

The eigenfrequencies of SA and SS modes for completely free isosceles triangular plates with respect to different thickness-to-width

ratios c and apex angles a

c kSA
1 kSA

2 kSA
3 kSS

1 kSS
2 kSS

3

a¼ 30�
0.1 4.5385 8.6799 12.824 10.445 14.825 18.216

0.2 2.2691 4.3397 6.4117 5.2202 7.4070 9.1044

0.3 1.5127 2.8935 4.2754 3.4777 4.9314 6.0650

0.4 1.1346 2.1710 3.2075 2.6055 3.6909 4.5432

0.5 0.90780 1.7377 2.5657 2.0814 2.9438 3.6275

a¼ 60�
0.1 13.725 20.383 22.112 13.725 20.383 23.373

0.2 6.8578 10.188 11.041 6.8578 10.188 11.645

0.3 4.5667 6.7890 7.3461 4.5667 6.7890 7.7102

0.4 3.4193 5.0880 5.4935 3.4193 5.0880 5.7118

0.5 2.7287 4.0652 4.3681 2.7287 4.0652 4.4686
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Table 10 (continued)

c kSA
1 kSA

2 kSA
3 kSS

1 kSS
2 kSS

3

a¼ 90�
0.1 18.083 26.494 31.519 12.084 22.847 27.656

0.2 9.0349 13.225 15.737 6.0396 11.407 13.809

0.3 6.0178 8.7858 10.452 4.0244 7.5846 9.1799

0.4 4.5057 6.5352 7.0817 3.0160 5.6600 6.7375

0.5 3.5872 4.6295 5.0986 2.4087 4.4523 4.4933

a¼ 120�
0.1 14.622 29.162 35.905 9.2177 21.677 25.073

0.2 7.3163 14.611 17.852 4.6096 10.850 12.516

0.3 4.8854 9.4036 10.012 3.0740 7.2370 8.3053

0.4 3.6680 5.4246 7.3780 2.3049 5.2631 5.5549

0.5 2.9246 3.5327 5.4078 1.8403 3.3804 4.3213

a¼ 150�
0.1 8.2788 17.949 29.962 5.0655 13.122 23.568

0.2 4.1546 9.0378 12.089 2.5351 6.5998 11.707

0.3 2.7824 5.2964 6.1068 1.6916 4.4111 5.3307

0.4 2.0930 3.0014 4.5773 1.2684 2.9567 3.3515

0.5 1.6699 1.9470 3.3183 1.0122 1.8633 2.6291
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